If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-6p-81=0
a = 1; b = -6; c = -81;
Δ = b2-4ac
Δ = -62-4·1·(-81)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{10}}{2*1}=\frac{6-6\sqrt{10}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{10}}{2*1}=\frac{6+6\sqrt{10}}{2} $
| 2y^-2+5y-1-3=0 | | 7x+12=-4x-17 | | 0=3x2-8+5 | | 4x+8=(2x-3) | | -4x-2(2x+10)=16 | | 80+20+x=180 | | 8x-16=5x-9 | | -6(4-x)=-90 | | 4n-3=-2n+5 | | (2/3)x-16=12 | | 11/3=j/4 | | 80+20+x=360 | | 16x^2=-56x | | 7=x•0+-8 | | 4n+3=-2n+5 | | 8x-30=4x+18 | | 3(9+5x)=117 | | 9,7y-5,7=1,7 | | 3.2x^2-4x+7=0 | | -3(4x-5)+2x=-5 | | 26=6+8+c | | x^2−14x=15 | | 4(x-4)+5=20 | | 77=1/2h(6+5) | | 6-y=2,3 | | H=-16(1)^2+80(1)+20=h | | 5/6(2-1)-x=x/6 | | 5x+2x+40=180 | | c+9=10 | | -16(1)^2+80(1)+20=h | | 9x-5(2x-1)=-3(x+4 | | 2(4x+6)+(2x-3)=31 |